Indoor Positioning Systems

Indoor Positioning Systems Can Revolutionise Digital Lean

The powerful combination of lean principles and digital technologies accelerates wasteidentification and mitigation faster than traditional lean methods. The new digital lean (also referredto as Lean 4.0) solutions incorporate sensors and digital equipment, yielding innovative solutionsthat extend the reach of traditional lean tools. The tracking of flexible and configurable productionsystems is not as straightforward as in a simple conveyor. This paper examines how the informationprovided by indoor positioning systems (IPS) can be utilised in the digital transformation of flexiblemanufacturing. The proposed IPS-based method enriches the information sources of value streammapping and transforms positional data into key-performance indicators used in Lean Manufacturing.The challenges of flexible and reconfigurable manufacturing require a dynamic value stream mapping.To handle this problem, a process mining-based solution has been proposed. A case study isprovided to show how the proposed method can be employed for monitoring and improvingmanufacturing efficiency.

Real-Time Locating System in Production Management

Real-time monitoring and optimization of production and logistics processes significantlyimprove the efficiency of production systems. Advanced production management solutions requirereal-time information about the status of products, production, and resources. As real-time locatingsystems (also referred to as indoor positioning systems) can enrich the available information, thesesystems started to gain attention in industrial environments in recent years. This paper providesa review of the possible technologies and applications related to production control and logistics,quality management, safety, and efficiency monitoring. This work also provides a workflow to clarifythe steps of a typical real-time locating system project, including the cleaning, pre-processing, andanalysis of the data to provide a guideline and reference for research and development of indoorpositioning-based manufacturing solutions.

Industrial Internet of Things based Cycle Time Control of Assembly Lines

Dynamic cycle time setting and line balancing are the most significant problems in modular manufacturing. Industry 4.0 and IIoT (Industrial Internet of Things) based production management systems connect decentralized production units and information sources to increase productivity and flexibility. We developed an IIoT based solution to ensure a real-time connection between products and assembly lines. The proposed dynamic cycle time setting algorithm takes into account the varying complexity of the product based on the real-time information provided by smart wireless sensors and an Indoor Positioning System (IPS). In this paper, we overview Industry 4.0 based assembly line management solutions, present the developed IIoT based infrastructure, and demonstrate the applicability of the proposed cycle time setting algorithm in a simulation example motivated by an industrial open station conveyor.