Network science

Graph configuration model based evaluation of the education-occupation match

To study education—occupation matchings we developed a bipartite network model of education to work transition and a graph configuration model based metric. We studied the career paths of 15 thousand Hungarian students based on the integrated database of the National Tax Administration, the National Health Insurance Fund, and the higher education information system of the Hungarian Government. A brief analysis of gender pay gap and the spatial distribution of over-education is presented to demonstrate the background of the research and the resulted open dataset. We highlighted the hierarchical and clustered structure of the career paths based on the multi-resolution analysis of the graph modularity. The results of the cluster analysis can support policymakers to fine-tune the fragmented program structure of higher education.

The details of this research are published in PLOS ONE:

http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0192427

All the files and the R code are available at:

https://github.com/abonyilab/Edu_Mine_Graph

Network science and control theory

Network theory based controllability and observability analysis have become widely used techniques. We realized that most applications are not related to dynamical systems, and mainly the physical topologies of the systems are analysed without deeper considerations. Here, we draw attention to the importance of dynamics inside and between state variables by adding functional relationship defined edges to the original topology. The resulting networks differ from physical topologies of the systems and describe more accurately the dynamics of the conservation of mass, momentum and energy. We define the typical connection types and highlight how the reinterpreted topologies change the number of the necessary sensors and actuators in benchmark networks widely studied in the literature. Additionally, we offer a workflow for network science-based dynamical system analysis, and we also introduce a method for generating the minimum number of necessary actuator and sensor points in the system.

http://www.nature.com/articles/s41598-017-00160-5

https://github.com/abonyilab/NOCAD